Welcome and Introductions

Buildng Codes Assistance Project (BCAP)
• Mission: To reduce the energy consumed in the construction and operation of buildings

Center for Sustainable Energy (CSE)
• Mission: to accelerate the transition to a sustainable world powered by clean energy

Project Partners
• American Institute for Architects (AIA)
• American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
Learning Objectives

Upon completion of this course, participants will know how to:

• Act in a leadership capacity to increase solar PV deployment in your community and in your practice
• Use the applicable codes and standards required to design safe solar PV installations
• Make an actionable connection between policy objectives for solar deployment and AIA sustainability and 2030 goals
• Distinguish among and understand the appropriate application for different types of solar energy systems
1. Welcome and introductions
2. Basic technical information on solar PV
3. Architectural integration of solar PV
4. State of the market and current policy
5. Benefits, financing options, and cost analysis
6. Code considerations
Today’s Instructors

• **Maureen Guttman, AIA**
 - President at the Building Codes Assistance Project (BCAP)
 - *A former president of both AIA Pittsburgh and AIA Pennsylvania, Maureen has been involved in the development, adoption and training on building codes for over 20 years. She is the current chairman of the ICC’s Sustainability Membership Council, which includes architects, engineers, code officials and product manufacturers.*

• **Don Hughes**
 - Codes and Standards Specialist for Solar PV at the Center for Sustainable Energy (CSE)
 - *Don provides technical assistance to code officials and solar contractors nationwide. Hughes helped to develop the California Solar Permitting Guidebook, a resource for local governments and permitting agencies to facilitate and streamline the installation of small solar energy systems.*
U.S. Department of Energy (DOE) SunShot Initiative Mission

On the Path TO SunShot
SunShot Initiative Program Organization

- SunShot Initiative
- Solar Energy Technologies Office
- U.S. Department of Energy
Solar Training and Education for Professionals (STEP)

- SunShot Initiative
- Soft Costs Competitive Awards
- Solar Training and Education for Professionals (STEP)
Solar Training and Education for Professionals (STEP)

Innovative training programs for the solar workforce

#SunShot

dot.gov/sunshot
Why are you here?

- Learn to design a solar PV system
- Effectively communicate the benefits of solar PV to clients, colleagues, and professional associates
- Continuing education credits
1. Solar is not aesthetically appealing
2. It will be more cost-effective to wait for further technological advances
3. Solar panels are still too expensive
4. The return on investment from going solar is too long
5. Only building owners can install solar
6. Solar will lower the value of my building
7. Solar is not suitable for certain climates
1. Solar is not aesthetically appealing
2. It will be more cost-effective to wait for further technological advances
3. Solar panels are still too expensive
4. The return on investment from going solar is too long
5. Only building owners can install solar
6. Solar will lower the value of my building
7. Solar is not suitable for certain climates
Mythbusters

1. Solar is not aesthetically appealing
2. It will be more cost-effective to wait for further technological advances
3. **Solar panels are still too expensive**
4. The return on investment from going solar is too long
5. Only building owners can install solar
6. Solar will lower the value of my building
7. Solar is not suitable for certain climates
Mythbusters

1. Solar is not aesthetically appealing
2. It will be more cost-effective to wait for further technological advances
3. Solar panels are still too expensive
4. The return on investment from going solar is too long
5. Only building owners can install solar
6. Solar will lower the value of my building
7. Solar is not suitable for certain climates
1. Solar is not aesthetically appealing
2. It will be more cost-effective to wait for further technological advances
3. Solar panels are still too expensive
4. The return on investment from going solar is too long
5. **Only building owners can install solar**
6. Solar will lower the value of my building
7. Solar is not suitable for certain climates
1. Solar is not aesthetically appealing
2. It will be more cost-effective to wait for further technological advances
3. Solar panels are still too expensive
4. The return on investment from going solar is too long
5. Only building owners can install solar
6. **Solar will lower the value of my building**
7. Solar is not suitable for certain climates
1. Solar is not aesthetically appealing
2. It will be more cost-effective to wait for further technological advances
3. Solar panels are still too expensive
4. The return on investment from going solar is too long
5. Only building owners can install solar
6. Solar will lower the value of my building
7. **Solar is not suitable for certain climates**
Buildings use about 40% of primary energy and 70% of electricity in the United States.
Why is this training important?

Design professionals play a crucial role in solar deployment.
YOU are the leaders in promoting the new technology
Why is this training important?

Putting the power source on the building
Why is this training important?

Meeting AIA 2030 goals
Why is this training important?

Meeting Architecture 2030 goals

Where we really are!

2012/2015 IECC

The 2030 Challenge

Source: ©2015 2030, Inc. / Architecture 2030. All Rights Reserved.
*Using no fossil fuel GHG-emitting energy to operate.